
Technical Documentation

Preface

Background Introduction
Diffuse lighting reconstruction is an important problem in computer graphics. Its
purpose is to reconstruct a lighting vector from a set of lighting samples for
subsequent rendering. In practical applications, due to the noise in the lighting
samples, the reconstructed lighting vector is often affected by noise, so it is necessary
to denoise the lighting vector.

Purpose
This document aims to introduce the algorithm for diffuse lighting reconstruction,
including the encoding, denoising, and reconstruction of the lighting vector, as well as
the variance estimation of the denoised lighting vector.

Note:
This algorithm was inspired by the first-order spherical harmonics lighting
approximation. It is unclear whether there is a similar algorithm, and it may be
original. If it is not original, please point it out in the issue.

Diffuse Lighting Denoising and Reconstruction Algorithm

Model

Definition
Assume a set of 𝑁 + 1 dimensional vectors 𝑉𝑖 (the vector set itself is denoted as 𝑉 , the
(𝑁 + 1)-th dimension is non-negative) and an energy measurement function 𝑤(𝑣) :
ℝ𝑁+1 → ℝ, 𝑤 is defined as

𝑤(𝑣) ≔ √∑
𝑁

𝑖=1
𝑣2

𝑖 + 𝑣𝑁+1

Define the mapping

𝑇 : List(ℝ𝑁+1) → ℝ𝑁+1

where List is an ordered set, 𝑇 (𝑉 ) is the mapping of all vectors in 𝑉  to ℝ𝑁+1, and 𝑇
satisfies:

1. Energy Conservation

For any 𝑉 ∈ List(ℝ𝑁+1),

𝑤(𝑇 (𝑉 )) = ∑
𝑛

𝑖=1
𝑤(𝑉𝑖)

2. Associativity

For any 𝑥 ∈ ℝ𝑁+1 and 𝑉 ∈ List(ℝ𝑁+1),

𝑇 ({𝑥, 𝑉 }) = 𝑇 ({𝑥, 𝑇 (𝑉 )})



3. Linearity

For any 𝑥 ∈ ℝ𝑁+1, 𝑛 ∈ ℕ+,

𝑇 ({𝑥, 𝑥, …, 𝑥}) = 𝑛𝑥

where {𝑥, 𝑥, …, 𝑥} is an ordered set of 𝑛 𝑥

Let

𝑉𝑖 = ( ⃗𝑣𝑖, 𝐼𝑖)

Λ(𝑉𝑖) ≔ 𝑣𝑖, 𝐼(𝑉𝑖) ≔ 𝐼𝑖

where

⃗𝑣𝑖 ∈ ℝ𝑁 , 𝐼𝑖 ∈ ℝ+

Then the above mapping 𝑇  exists, and its form is:

𝑇 (𝑉 ) = (∑
𝑛

𝑖=1
𝑣𝑖, ∑

𝑛

𝑖=1
𝜔(𝑉𝑖) − | ∑

𝑛

𝑖=1
𝑣𝑖|)

where

𝜔(𝑉𝑖) ≔ |𝑣𝑖| + 𝐼𝑖

Physical Meaning
Select 𝑁 = 3, take 𝑉  as the set of lighting samples, each sample 𝑉𝑖 is a lighting vector,
the first three dimensions of 𝑉𝑖 are directional lighting, the fourth dimension is
ambient lighting, 𝑤(𝑉𝑖) is the energy of the lighting, 𝑇  is the lighting synthesis
operator, 𝑇 (𝑉 ) is the synthesized lighting, and 𝑇  satisfies energy conservation,
associativity, and linearity.

Algorithm
Take the input of the algorithm as a set of lighting vectors 𝑉  input into the BRDF
model, and the output as a lighting vector 𝑇 (𝑉 ). The goal of the algorithm is to
reduce the noise of the lighting vector and reconstruct the lighting vector.

Algorithm Process
1. Encode 𝑉𝑖 as 𝑉𝑖 = (𝐼 ∗ ⃗𝑑, 0), where 𝐼 is the sampled lighting intensity, ⃗𝑑 is the

sampled incident lighting direction, and 0 is the ambient lighting intensity
2. Filter 𝑉𝑖 in the time domain to obtain 𝑉out = 1

𝑛𝑇 (𝑉 ), where 𝑛 is the number of
sampled lighting samples

3. Apply the SVGF algorithm to 𝑉out for denoising to obtain 𝑉 ′
out

4. Input 𝑉 ′
out into the BRDF model to obtain the denoised lighting

Algorithm Implementation
1. Actually encode 𝑉𝑖 as 𝑉𝑖 = (𝐼 ∗ ⃗𝑑, 𝐼), where 𝐼 is the sampled lighting intensity, ⃗𝑑 is

the sampled incident lighting direction
2. Directly mix 𝑉𝑖 during weighted mixing



3. During reconstruction, according to the expression of the 𝑇  operator, the mixing
operation in step 2 is equivalent to the weighted sum of the first three dimensions
of 𝑉𝑖 and the weighted sum of the fourth dimension, and can correctly construct
the result

4. Only apply the 𝑇  operator during decoding, and in other cases, treat 𝑉𝑖 similarly to
normal lighting processing

The key code is as follows:

struct T
{
    mediump vec4 v_I; // (I * arrow(d), I)
    mediump vec2 CoCg; // (Co, Cg)
};

vec3 project_T_irradiance(T L, vec3 N)
{
    float Y = L.v_I.w;
    float T = Y - L.CoCg.y * 0.5;
    float G = L.CoCg.y + T;
    float B = T - L.CoCg.x * 0.5;
    float R = B + L.CoCg.x;

    vec3 irradiance = vec3(R,G,B) * (max(dot(L.v_I.xyz, N),0) + (Y -
length(L.v_I.xyz))) / (Y+1e-3);
    return max(irradiance, vec3(0.0));
}

T irradiance_to_T(vec3 irradiance, vec3 dir)
{
    T result;
    float Co = irradiance.r - irradiance.b;
    float t = irradiance.b + Co * 0.5;
    float Cg = irradiance.g - t;
    float Y = max(t + Cg * 0.5, 0.0);

    result.CoCg = vec2(Co, Cg);
    result.v_I = vec4(dir * Y,Y);
}

T mix_T(T a, T b, float s)
{
    T result;
    result.v_I = mix(a.v_I, b.v_I, s);
    result.CoCg = mix(a.CoCg, b.CoCg, s);
    return result;
}

T init_T()
{
    T result;
    result.v_I = vec4(0);
    result.CoCg = vec2(0);
    return result;
}



T scaleT(T A, float x) {
    T tmp;
    tmp.CoCg = A.CoCg * x;
    tmp.v_I = A.v_I * x;
    return tmp;
}

void accumulate_T(inout T accum, T b, float scale)
{
    accum.v_I += b.v_I * scale;
    accum.CoCg += b.CoCg * scale;
}

Lighting Reconstruction
Assuming the denoised lighting 𝑉 ′

out = (𝐷⃗, 𝐸) has been obtained, where 𝐷⃗ is the
directional lighting vector and 𝐸 is the ambient lighting component, for a given BRDF
model, the reconstructed lighting can be obtained by the following method:

𝐼𝑜 = 𝑓brdf( ⃗𝑒, 𝐷⃗, ⃗𝑁) + ∫
𝜔

𝑓brdf( ⃗𝑒, 𝐸𝜔⃗, ⃗𝑁) d𝜔

where 𝐼𝑜 is the reconstructed lighting intensity, 𝑓brdf is the BRDF function, ⃗𝑒 is the
viewing direction, ⃗𝑁  is the normal vector, 𝜔⃗ is the incident lighting direction, and d𝜔 is
the differential solid angle.

The following images show the directional components





The following images show the directional components and their diffuse lighting
reconstruction results



It is clear that the directional components of the denoised lighting roughly point to
the direction with significant lighting contribution. Therefore, we can reuse this
directional component, input it into the sampler for importance sampling, and obtain
more accurate lighting reconstruction results.

It is expected that future path tracers will reuse the lighting directional components
from the previous frame for importance sampling to obtain more accurate lighting
reconstruction results, rather than simply using the BRDF’s pdf for aimless sampling.

Variance Estimation (Possibly Useful?)
Consider the following optimization problem (temporarily ignoring the (𝑁 + 1)-
dimensional component):



𝐸( ⃗𝑉 2) = min 1
𝑛

∑
𝑛

𝑖=1
| ⃗𝑉𝑖|2

𝑠.𝑡. 1
𝑛

∑
𝑛

𝑖=1

⃗𝑉𝑖 = ⃗𝜇

𝑠.𝑡. 1
𝑛

∑
𝑛

𝑖=1
| ⃗𝑉𝑖| = 𝐼

where ⃗𝜇 is the expectation of ⃗𝑉 , and 𝐼 is the expectation of | ⃗𝑉 |

We need to solve this problem to obtain 𝐸( ⃗𝑉 2)

Considering symmetry, let ⃗𝑉𝑖 = 1
𝑛 ⃗𝜇 + ⃗𝑒𝑖, satisfying ⃗𝜇 ⋅ ⃗𝑒𝑖 = 0 and ∑ ⃗𝑒𝑗 = 0, | ⃗𝑒𝑖| = | ⃗𝑒𝑗|

Obviously, the first constraint is satisfied, and the second constraint becomes

1
𝑛

∑
𝑛

𝑖=1
| 1
𝑛 ⃗𝜇 + ⃗𝑒𝑖| = 𝐼

That is

1
𝑛

∑
𝑛

𝑖=1

√( 1
𝑛 ⃗𝜇 + ⃗𝑒𝑖)

2
= 𝐼

That is

1
𝑛

∑
𝑛

𝑖=1

√ 1
𝑛2 | ⃗𝜇|2 + 2

𝑛 ⃗𝜇 ⋅ ⃗𝑒𝑖 + | ⃗𝑒𝑖|2 = 𝐼

Considering ⃗𝜇 ⋅ ⃗𝑒𝑖 = 0, then

1
𝑛

∑
𝑛

𝑖=1

√ 1
𝑛2 | ⃗𝜇|2 + | ⃗𝑒𝑖|2 = 𝐼

Since | ⃗𝑒𝑖| = | ⃗𝑒𝑗|, then

1
𝑛

∑
𝑛

𝑖=1

√ 1
𝑛2 | ⃗𝜇|2 + | ⃗𝑒𝑖|2 = √ 1

𝑛2 | ⃗𝜇|2 + | ⃗𝑒𝑖|2

Thus

𝑉𝑖
2 = 𝐼2

That is

𝐸( ⃗𝑉 2) = 𝐼2

Considering the original problem, we have

𝐸(𝑉 2) = 1
𝑛

𝜔(𝑇 (𝑉 ))2

Then the variance estimation is



𝐷(𝑇 (𝑉 )) = 1
𝑛

𝜔(𝑇 (𝑉 ))2 − 1
𝑛2 Λ(𝑇 (𝑉 ))2

Simplified as 𝐷(𝑇 (𝑉 )) = 𝜎2(𝑉 )

Properties of Variance
𝜎2(𝜆𝑉 ) = 𝜆2𝜎2(𝑉 )


	Technical Documentation
	Preface
	Background Introduction
	Purpose
	Note:


	Diffuse Lighting Denoising and Reconstruction Algorithm
	Model
	Definition
	Physical Meaning

	Algorithm
	Algorithm Process
	Algorithm Implementation
	Lighting Reconstruction

	Variance Estimation (Possibly Useful?)
	Properties of Variance



